
LLNL-PRES-737358
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Recent	work	with	RAJA,	and	a	nested	loop	
update
DOE	Centers	of	Excellence	Performance	Portability	
Meeting	2017

Adam	J.	Kunen

August 23, 2017

LLNL-PRES-737358
2

RAJA	is	a	C++	abstraction	layer	that	enables	portability	
with	small	disruption	to	application	programming	styles	

The	main	goal	of	RAJA	is	to	balance	performance…

§ Preserve	and	augment	abilities	of	C++	compilers	to	optimize

§ Support	various	forms	of	fine-grained	(on-node)	parallelism	and	various	
programming	model	options	(OpenMP,	CUDA,	TBB,	OpenACC,	...)

…	and developer	productivity

§ Maintain	single-source	kernels	and	don’t	bind	an	app	to	a	particular	PM

§ Clear	separation	of	responsibilities
— RAJA:			Execute	loops,	encapsulate	hardware	&	programming	model	details
— Application: Select	loop	iteration	patterns	and	execution	policies	with	RAJA	API

RAJA development is currently driven by the needs of
ATDM/ASC applications at LLNL and ECP collaborators

LLNL-PRES-737358
3

§ RAJA	decouples	loop	iteration	and	loop	body
— Iterations	are	“tasks” – aggregate,	reorder,	etc.

§ RAJA	Concepts:
— Patterns:	forall,	forallN,	reduce,	scan

— Policies: sequential,	simd,	openmp,	cuda,	….
— Index:	iterations	– aggregate,	reorder,	tile,

RAJA	concepts	help	encapsulate	loop	execution	
details

double* x ; double* y ;
double a, tsum = 0, tmin = MYMAX;

for (int i = begin; i < end; ++i) {
y[i] += a * x[i] ;
tsum += y[i] ;
if (y[i] < tmin) tmin = y[i];

}

C-style for-loop

RAJA-style loop
double* x ; double* y ;
double a ;
RAJA::SumReduction<reduce_policy, double> tsum(0);
RAJA::MinReduction<reduce_policy, double> tmin(MYMAX);

RAJA::forall< exec_policy > (IndexSet , [=] (int i) {
y[i] += a * x[i] ;
tsum += y[i];
tmin.min(y[i]);

});

Execution	patterns	&	policies	
(scheduling,	PM	choice,	etc.)

double* x ; double* y ;
double a ;
RAJA::SumReduction<reduce_policy, double> tsum(0);
RAJA::MinReduction<reduce_policy, double> tmin(MYMAX);

RAJA::forall< exec_policy > (IndexSet , [=] (int i) {
y[i] += a * x[i] ;
tsum += y[i];
tmin.min(y[i]);

});

Loop body is mostly unchanged (C++ lambda function).

IndexSets
(iteration	space,	ordering,	etc.)

double* x ; double* y ;
double a ;
RAJA::SumReduction<reduce_policy, double> tsum(0);
RAJA::MinReduction<reduce_policy, double> tmin(MYMAX);

RAJA::forall< exec_policy > (IndexSet , [=] (int i) {
y[i] += a * x[i] ;
tsum += y[i];
tmin.min(y[i]);

});
Portable	Reduction	types

double* x ; double* y ;
double a ;
RAJA::SumReduction<reduce_policy, double> tsum(0);
RAJA::MinReduction<reduce_policy, double> tmin(MYMAX);

RAJA::forall< exec_policy > (IndexSet , [=] (int i) {
y[i] += a * x[i] ;
tsum += y[i];
tmin.min(y[i]);

});

LLNL-PRES-737358
4

§ “Light	touch”
— Existing	application	data	structures	&	algorithms	require	little	change,	if	any

§ “Low	barrier	to	entry”
— Parallelism	can	be	added	selectively	and	performance	tuned	incrementally

§ “Application-facing	design	philosophy”
— Maps	naturally	to	apps	and	can	be	customized	– easy	to	grasp	for	(non-CS)	

application	developers

§ “Performance”
— RAJA	does	well	with	“streaming”	kernels	that	are	prevalent	in	LLNL	codes
— Designed	for	coarse-grained	synchronization	– reduces	resource	contention	

and	memory	synchronization	overheads

4

LLNL-PRES-737358
5

§ Cleaner	organization	of	concepts	&	header	files,	refined	APIs

§ Backends for	OpenMP4.x,	OpenACC,	TBB

§ Parallel	scans

§ New	IndexSet implementation	supports	arbitrary	segment	types

§ “Multi-policy”	for	runtime	policy	selection

§ Improved	integration	with	CHAI

§ RAJA	Performance	Suite	– run	various	experiments	to	compare	
kernels	(RAJA	vs.	native),	help	guide	compiler	NRE	work

§ Expanded	and	refined	nested	loop	capabilities	and	API	

5

LLNL-PRES-737358
6

§ Recent	work	with	NVidia	nvcc,	IBM	hackathon	at	LLNL
— Identified	performance	issues	in	nested-loop	abstractions	(RAJA::forallN)

• Copy	construction	of	loop	body
• Capture-by-value	vs.	capture-by-reference	causing	issues	with	nvcc	correctness

§ Rework	of	forallN
— Current	implementation	of	forallN relies	on	a	”peel	and	bind”	mechanism	

to	generate	the	nested	loop	structure	and	bind	the	loop	iterates	to	the	
lambda
• Causes	excessive	copy	construction	– seen	as	massive	performance	problem	
with	things	like	CHAI,	host-device	lambdas,	reduction	object.

— Revamp	of	forallN replaces	“peel	and	bind”	with	“peel	and	set”	
mechanism	that	doesn’t	trigger	copy	construction

6

LLNL-PRES-737358
77

For i : I
For j : J

For k : K
body(i,j,k)

auto body = [=](int i, int j, int k){ … };
RAJA::forallN<pol>(I, J, K, body);

A = IndexConverter(body)
B = PeelOuter(A)
For i : I

C = BindFirstArg(A, i)
D = PeelOuter(C)

For j : J
E = BindFirstArg(C, j)
F = PeelOuter(E)

For k : K
G = BindFirstArg(E, k)
G()

§ Each	loop	performs	two	capture-by-value	
wrappings	of	the	loop	body	
— One	peels	off	that	loops	execution	policy	and	

segment
— The	other	binds	that	loops	iterate	to	the	body	

(similar	to	std::bind)
— Number	of	copy-constructions	of	body	O(I*J*K)

LLNL-PRES-737358
8

§ It	was	straightforward	to	design
— An	initial	implementation

§ We	just	didn’t	know
— Often	the	”body”	is	a	lambda	which	only	captures	POD	types

• The	compiler	can	eliminate	most	of	the	copy	constructors	and	inline	everything
• There	is	no	apparent	inefficiency

§ So	what	happened?
— Three	things:

• We	used	RAJA	reduction	objects
• We	used	CHAI
• CUDA	host-device	lambdas

— These	have	explicit	copy	constructors
• The	compiler	does	not	optimize	these	away
• Performance	drops	through	the	floor

Why	was	Peel-and-Bind	used	if	it’s	so	
inefficient?!?

We	only	see	performance	loss	when	our	lambdas	capture	complex	objects

LLNL-PRES-737358
99

For i : I
For j : J

For k : K
body(i,j,k)

auto body = [=](int i, int j, int k){ … };
RAJA::forallN<pol>(I, J, K, body);

idx = std::tuple<int, int, int>
A = InvokeWrapper(body)
For i : I

idx.i = i

For j : J
idx.j = j

For k : K
idx.k = k

A(idx)

§ Each	loop	assigns	its	iterate	into	a	tuple
— One	wrapping	of	body	is	needed	to	provide	

invocation
— Wrapper	can	be	captured-by-reference	at	each	

loop	nest	level
— Number	of	loop-body	copy	constructions	is	O(1)
— Side	Benefit:	New	portable	metaprogramming	

library	“camp”

LLNL-PRES-737358
10

§ A	lot	of	things	are	going	on	in	RAJA
— New	features
— New	backends

§ Running	up	against	performance	portability	issues	with	CUDA	
and	OpenMP	4.5	that	are	forcing	us	to	rethink	certain	
implementation	strategies

§ Bug	reports,	feature	requests,	code	contributions,	are	all	
welcome!

§ Get	RAJA	on	github:
— https://github.com/LLNL/RAJA

1
0

LLNL-PRES-737358
12

Number	of	loop-body	copy	constructions	for	the	
Peel-and-Bind	implementation

𝐶𝑜𝑝𝑖𝑒𝑠(𝐼)) = 2 + .2
/

)01

2 𝐼3

)

301

+2 𝐼3

/

301

𝐶𝑜𝑝𝑖𝑒𝑠(𝐼4) = 2 + 𝐼4

𝐶𝑜𝑝𝑖𝑒𝑠(𝐼4, 𝐼1) = 2 + 2 𝐼4 +	 𝐼4×𝐼1

𝐶𝑜𝑝𝑖𝑒𝑠 𝐼4, 𝐼1, 𝐼8 = 2 + 2 𝐼4 + 2 𝐼4×𝐼1 + 𝐼4×𝐼1×𝐼8

= 𝒪 2 𝐼3

/

301

The	number	of	copy-ctors called	is	on	the	order	of	the	iteration	space	size

